宗旨和范围
Advances in Applied Clifford Algebras is a peer-reviewed scientific journal that publishes original research papers and also notes, expository and survey articles, book reviews, reproduces abstracts and also reports on conferences and workshops in the area of Clifford algebras and their applications to other branches of mathematics and physics, and in certain cognate areas. There is a vibrant and interdisciplinary community around Clifford and Geometric Algebras with a wide range of applications. The main conferences in this subject include the International Conference on Clifford Algebras and their Applications in Mathematical Physics (ICCA) and Applications of Geometric Algebra in Computer Science and Engineering (AGACSE) series. Less
关键指标
期刊详情
- 出版商SPRINGER BASEL AG
- 出版语言English
- 出版频率Continuous publication
- 出版语言English
- 出版频率Continuous publication
- 创刊年份1991
- Publisher URL
- 网址
月数 | 发表论文百分比 |
---|---|
0-3 | 0% |
4-6 | 29% |
7-9 | 31% |
>9 | 41% |
Topics Covered
年度发行情况
- 5Y
- 10Y
常见问题
Advances in Applied Clifford Algebras 是从何时开始发行的?
Advances in Applied Clifford Algebras 自1991开始发行至今。
Advances in Applied Clifford Algebras 多久发行一次?
Advances in Applied Clifford Algebras 为Continuous publication。
Advances in Applied Clifford Algebras 的出版商是谁?
Advances in Applied Clifford Algebras 的出版商是SPRINGER BASEL AG。
我在哪里查看 Advances in Applied Clifford Algebras 的宗旨和范围?
查看 Advances in Applied Clifford Algebras 的宗旨和范围,请点击此处。
我如何在意得辑上查看Advances in Applied Clifford Algebras 的指标?
查看 Advances in Applied Clifford Algebras 的指标,请单击此处。
Advances in Applied Clifford Algebras 的 eISSN和pISSN 号分别是什么?
1661-4909 的 eISSN 为 0188-7009,pISSN 为 Advances in Applied Clifford Algebras 。
该期刊重点关注哪些主题?
本期刊关注的主题范围广泛,包括 Standard Model, Pythagorean theorem, Fourier transform, General relativity, Uncertainty principle, Quaternion matrix, Root system, Spacetime algebra, Clifford analysis, Classical field theory, Zero mass, Linear algebraic group, Complex representation, Dirac operator, Two-state quantum system, Local symmetry, Matrix representation, Hamiltonian constraint, Clifford fourier transform, Mandelbrot set。
为什么搜索适合我研究的期刊很重要?
选择与您研究领域紧密相关的期刊,有助于确保您的学术成果能够触及最合适的读者群体, 从而最大化您的学术影响力和对该领域的贡献。
对期刊的选择会影响我的学术事业吗?
当然。在知名期刊上发表论文可提升您的学术形象, 使您在获取资助、终身教职和其他职业机会方面更具竞争力。
只考虑具有高影响力的期刊是否明智?
虽然高影响力的期刊知名度高,但投稿竞争也相对激烈。因此, 关键在于权衡考虑期刊的影响因子与论文被接受的可能性。